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Bandwidth Allocation for Multiple Qualities
of Service Using Generalized Processor Sharing

G. de Veciana and George Kesidis, Member, IEEE

Abstract— We consider the asymptotic behavier of the queue length
distribution in segregated buffers sharing a deterministic server via
a class of generalized processor sharing (GPS) policies. Such policies
have been proposed as a means to guarantee individual quality of
service constraints to heterogeneous streams in integrated services digital
networks. These results exhibit the manner in which spare capacity
is shared by statistically multiplexed traffic streams. The framework
corresponds to a natural relaxation of a single GPS node subject to (0. p)-
constrained flows where, instead of studying the worst case behavior,
we consider statistical bounds on the performance of individual traffic
streams.

Index Terms—Multiservice communication networks, bandwidth allo-
cation, large deviations.

I. INTRODUCTION

ATM-based BISDN networks with heterogeneous applications re-
quiring stringent performance guarantees will need appropriate ser-
vice provisioning schemes including: buffer/bandwidth allocation,
call admission, and call routing [10], [22]. The difficulty of this
problem relative to traditional (circuit-switched) telephone networks
lies in the multiplexing of multiple types of packetized traffic streams
and messages via switches and communication links. In order for
streams to share resources, one must guard against traffic fluctuations
by inserting buffers. This in turn introduces interactions among
relatively bursty traffic streams often rendering performance analysis
difficult and the ensuing traffic management schemes inefficient.

To ease the task of managing such a network it is desirable to
obtain an equivalent circuit-switched model based on archetypes
for different classes of streams, e.g., audio, graphics, low- and
high-quality TV, and LAN-to-LAN traffic. For example, suppose a
collection of sources, n; of type j € J, each known to require a fixed
bandwidth a;, share a link with capacity c. One can easily check for
available spare bandwidth by considering whether

D e <e (1)

JjeJ

Such a scheme, when extended to a network, would resemble
traditional telephone systems where connections are set up if physical
resources are available to link the source to the destination. Standard
techniques used in telephony could then be adapted to packet-
switched networks.

When traffic streams are bursty and share a buffered link, (1) no
longer has a clear-cut counterpart.! Indeed, the interactions among
traffic streams and resources in such networks is typically not linear
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1A conservative approach would be to let o ; denote the peak rate of stream
J. while an optimistic one would instead assign mean rate. Neither of these
approaches is truly useful when traffic is bursty.

or decoupled across the different types of streams. Network designers
often resort to tables indicating how many streams of each type
can be tolerated while maintaining acceptable performance [21].
Assuming good traffic models are available, the required tables’
can be obtained by painstaking simulation of switching devices.
For networks composed of multiple nodes these simulations can be
prohibitively lengthy and inflexible—one needs to simulate the entire
network subject to multiple sets of loads to generate the necessary
data. . :

There exists, however, an approximate result for multiple types of
streams sharing a single large buffer with deterministic service rate
¢ leading to a linear constraint similar to (1). Specifically, suppose a
stringent “6-constraint” of the form '

P(W > B) < exp[—6B] (e.g., ~ 1079) )

is 1o be satisfied by the stationary workload W (or queue length)
of the shared buffer of size B; by maintaining such performance
constraints, one can limit overflows, loss, or virtual delays in the
buffer. For asymptotically large B, one can show that

) 1
Y njo(6) < c = Jim —logP(W > B) < -5 (3)
i€l R :
where «;(6), the effective bandwidth of stream j, depends on the
statistics of the traffic stream and ranges from the mean to the *‘peak”
rate of the traffic type as § increases [16], [2], [6], [23]. If a stteam
has slotted arrivals {A7}, its effective bandwidth is given by
A;(6) .1 o :

: 15 A;(6) = lim ~logIexpl[s Al @

=1

a;(6) =

and can be computed for many of the standard traffic models [16],
[2]. The constraint on the right-hand side of (3) does not strictly
guarantee that (2) is satisfied; however, it does suggest that for large
enough B this might be roughly the case. Assuming such results are
valid, call acceptance can be easily carried out by checking if the
available capacity is larger than the effective bandwidth of the new
stream. Numerous researchers have suggested the use of such résults
for bandwidth allocation. For early work in this area see [15], [13],
[14]. The existence of effective bandwidths for Markov fluid sources
was studied via spectral expansions in [12], {11]. General results were
obtained via large deviations in [16], [2], [6], [23].

Although this approach is appealing, many further issues need to be
addressed before it becomes viable. Our goal herein is to investigate
network designs oriented toward individual quality of service (QoS)
guarantees rather than aggregate performance constraints. Notice that
guaranteeing a cell loss probability no worse than 107° to the
aggregate of a heterogeneous mix of traffic streams sharing a buffer is
not equivalent to making the same performance guarantee to each of
the streams individually [9]. If, however, statistically identical streams
share a buffer then the aggregate and individual loss constraints are
the same. ’

In order to guarantee individual users specific QoS requirements,

buffer and bandwidth sharing rules partially isolating their streams
from one another must be put into place. A typical approach is to
have traffic queue in segregated buffers while sharing the output
capacity via service policies roughly corresponding to weighted
round-robin, for example, dynamic-time slicing [21] and Generalized
Processor Sharing (GPS) [19]—for earlier work see [8]. The GPS
concept in conjunction with leaky bucket flow control has proven
to be a particularly successful framework in which to guarantee
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Fig. 1. Segregating traffic and sharing capacity.

individual worst case end-to-end backlog or delay bounds [20]. In this
correspondence we focus on a single GPS node subject to statistical
traffic flows and individual statistical QoS constraints.

Fig. 1 shows a simple example in which a video stream and a
stream corresponding to bulk data transfer share a link with capacity
¢. The ¢; and ¢ roughly correspond to the fraction of bandwidth
allocated to each stream, see [19] and Section II for details. A
real-time video stream with stringent delay requirements might be
assigned a large ¢1, however, when no video packets are queued
the whole capacity can be devoted to transmitting data in the second
buffer. In the worst case, the GPS policy guarantees a back-logged
buffer ¢ a minimal bandwidth ¢;c.

In this correspondence we find rough bandwidth requirements for
such systems when each buffer must satisfy an overflow constraint.
These in turn indicate how weighting parameters might be selected
as well as approprlate call admlttance and routing rules based on
individual user requirements.

II. BANDWIDTH REQUIREMENTS AND GPS

Consider a collection of traffic streams, J, sharing multiple seg-
regated buffers, i = 1--- N, generalizing the example in Fig. 1. A
particular buffer could handle either a single stream, or streams of the
same type, e.g., several audio sessions. We will assume that the input
traffic streams have known effective bandwidths. The total output
rate ¢ is shared among the buffers according to a GPS service policy,
see [19], [20] for details. This has the advantage of guaranteeing
minimal service rates to each of the buffers according to load-
sharing parameters {#:}}L, preselected by the network software. In
particular, the GPS policy guarantees that for any interval of time,
say [—-n,0), for which a buffer ¢ has work to do, the cumulative

departures from that buffer during the interval, SD* | satisfy
5o 5 9 5
S 25 ®)

This in turn implies that a buffer with a backlog is guaranteed a
minimum output rate, in particular

Sfl > n—¢i—c S ne;.

E:‘ cr ¥
This fractional guaranteed bandwidth is a worst case estimate. As
noted in the Introduction, a buffer ¢ may get a much larger proportion
of the total capacity of the link. For example, if all other buffers are
idle, buffer 7 will see a service rate amounting to the total capacity
of the output link c. When “spare capacity” is available, it is shared
equitably among buffers requiring service, that is, it is shared in

propomon to the respective weighting factors.

A. Large Buffer Asymptotics for Two-Buffer GPS

Below we present the case where there are only two buffers sharing
a link with capacity c. Without loss of generality, the weighting

parameters are normalized (i.e., ¢1 + ¢2 = 1) and we consider the
distribution at Buffer 1. Extensions to multiple streams and buffers
are discussed in Section II-B. In our analysis we use discrete-time
fluid models for traffic streams; these are in turn related to slotted
packet streams. Indeed, a consequence of [19, Theorem 2] is that the
queue length of a packetized version of GPS (PGPS) also satisfies
the asymptotics of Theorem 1 and its corollaries.

Theorem 1: Let {AL}5%_, § = 1,2 be stationary ergodic
arrival processes with IE[AL + A2] < c. Assume the streams are
independent and satisfy an LDP (for example, assume they satisfy
the Gartner—Ellis Theorem) with finite asymptotic moment generating
functions

hm llogIEexp [ ZA’] < oo (6)

1= l

A;(6) =

with AJ(-) strictly convex. Consider the queue length processes
generated when the GPS policy is in effect

1
Qn+1

where the departures, D} and D2, from the two buffers are consistent
with (5). Then the stationary queue length for the first buffer, denoted
by the random variable Q*, satisfies

=QL+ AL - D} and Q1,, = Q)+ Al - D;.

Af(an) 4 Aj(a2)

. 1 1
i — logP B)< ~ .
B B ogP(Q > B) < c1tasAdac>e a1 + az A dac — ¢

Alternatively, for 6 > 0
a1 (8) + o (6,¢2¢) < c = hm —logP(Q >B)<-6 (1

where af (6, p2c), defined below, depends on bandwidth guaranteed
to the second buffer. Indeed,

a2D(67 ¢23)
s (8), if «3(8) < pocand EA2 < ¢oc
= { dac— A3(d2c)/6, if ab(8) > dacand EAZ < ¢oc
bac if A2 > ¢ac

where o3 (6) = argsup,{aé — A3(6)}.

Remark 1: This result has the following intuitive interpretation: In
order to guarantce an overflow §-constraint on Buffer 1 we require
that o (8) + o (6,42¢) < ¢ (7). In turn, af (8, ¢ac) is in one of
two regimes. If a3 (8) < ¢ac, then o (8, ¢2¢) = a2(6) so the usual
effective bandwidth constraint is obtained, i.e., a1 (8) + a2(8) < ¢;
otherwise, the firewall set up by the GPS service policy comes into
play and the requirement depends on the service rate and weighting
parameters becoming a1(6) < déic + Az(q')zc)/& Eventually if
the load on Buffer 2 is high enough, ie., IBEAZ > ¢ac, then the
requirement on Buffer 1 becomes a1 (8) < ¢1c. In the first case, we
call the system decoupled and say that with respect to the desired
constraint it behaves as if the resources were pooled together. In
the second case we say that the second buffer.is saturated and that
segregation is taking place. Further comments on the significance of
a3 (8) are offered in [4]. Buffer 2 will be subject to a similar set of
requirements.

Remark 2: We can use previous “devoted”-server effective band-
width results (see, €.g., [16]) and the minimum bandwidth property
of GPS [19] to obtain

Al(oa)
—¢1c’

inf
a1>drc Ay

.1 1
— < —
ma logP(Q" > B) <

which is cruder than the equality given by Theorem 2.1.
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Proof of Theorem 1: We study the stationary distribution for the
queue length in Buffer 1, Q*, by way of the Loynes’s construction
[17]. We set the queues empty at time —m and consider the
distribution induced-at time O as the empty §tarting point —m is
moved into the remote past. More specifically, let

™ =0, forn<-m
Qi =@im + 4L - DI,
=[Q™ + Ay, — c+ D2™T

where the last equality uses the fact that GPS is a work-conserving
service policy and can be seen to correspond to Lindley dynamics. A
similar set of equations defines the dynamics for the second queue,
Q2™, as well as the dynamics for the aggregate content of the
GPS node QT = Qr™ 4+ QZ™. Note that the departures D™
and D?™ have been indexed by m to indicate the fact that the
departure processes depend on the starting point —m. The stability
condition, IE[A}, + AZ] < ¢, guarantees the existence of a stationary
distribution, denoted by @, for the total content of the GPS node.
Indeed, following Loynes’s argument we find that the distribution of
Q{" increases monotonically to that of @ = Q' + Q?; moreover, Q!
and Q are unique since they can be constructed from the last time the
total content of the system emptied before time zero. The stability
of the total system guarantees the existence of this time. Thus the
sequence Qo™ < QF* in turn converges to Q*. Define 5641 =0 and

ﬁ=i£

i=—n

forn > —m

for n > 1, and define S,fz,S,?l’m and S,?Z’m similarly. The
distribution of Q'™ is given by that of a reflected random walk,
which in turn has the following- form [1, p. 801:

1,m D2m
0" = B, Sh — e S0
' 2,m
= max Sn = ( c—SP )V ndic
o 1 2,m
= max 52 — (nc= STV (ne — ngac)
o §AY L gD*™ A 8
—01<1}la,<x w Sy ngac — nc. (8)

Here A and V denote, respectively, min and max. The second equal-
ity above follows from the fact that the n achieving the maximum on
the right-hand side corresponds to a nonidling busy period, [—=, 0),
for which the minimal guaranteed bandwidth property of GPS must
hold; whence the additional max term does not affect the right-hand
side. The third step uses the fact that ¢y + ¢2 = 1.

First assume TEA2 < ¢oc. Notice that Sfl and S,?2’m in (8)
are dependent. This turns out to be inconvenient so we shall replace
sp *™ with the following upper bound: the conservation of traffic
gives

ST = QN S QT < QP 4+ S
Since the second queue has a minimal guaranteed bandwidth of ézc,

we can upper-bound Qi;" by, the queue length that would have
resulted if in fact the service rate were exactly ¢oc:

Q*™ < max SiAz - 5;42 — (i —n)dre =: Q.

n<i<m

Combining these two.bounds with (8) we obtain the fd]lowing
bound for the queue length in the first buffer:

Q" < max ST+ QX+ 52 Angsc—nc )

1 ~ 2 .
where 52 and Qz_;” + 527 are now independent.

Since the limits in (6) exist, for € > 0 there is an n. such that
Vn > ne, Bexp[0S27] < exp[n(A;(6) + o)]

for both streams j = 1 and 2. We will use this result to-study the
6 for which IEexp [#Q™] is finite. Indeed, it follows from (9) and
z,y > 0 = max(z,y) < z + y that

Eexp[0Q5™ <" Eexp[0(S2 +(Q%7+527) Andsc — ne)]

n=0

<Ci+ > exp[n(Ai(8)—fcte)]

n>ne
Eexp[0((Q*T+S2) Angso)]

where we have used the fact that Qz_nm is nondecreasing in m.
Next we bound the last term on the right-hand side above by
showing that following limits exist:

A2(0) = lim 7111og1Eexp (S A ndsc)] (10)

= lim %logIEexp [6((Q%° + sz) Angsc)] < f¢sc.
an

Note that since the arrival streams satisfy LDP’s the limits A2 @)
exist, and in fact by Varadhan’s lemma [7, p. 120] they are given by

A7 (8) = suplfmin[as, dac] — As(az)]

— A? (6 ) ’
9¢)26 - A§(¢2C),
where o5 (8) is defined implicitly by

Az (8) = 03(0)8 — A5 (a2 (6)).

if a5(0) < ¢ac
otherwise

(12

This quantity is discussed in [4], where it was called the decoupling
bandwidth, an interpretation which also applies in this scenario (see
Remark 1).

To show that the limits in (10) and (11) are in fact the same, note
that

Bexp[8(S Anac)] < Bexp (6((Q257 + S2°) Andac). (13)
Also using the fact that »
maxfe; — yi] Az = max{(e; - 9i) A 2] = max(zs A (v + 2) - pi]
and that the limits in (10) eiist we have that for large enough n > n.,
Eexp [0((Q% + 1) Angso)]
=IEexp[d rgaz{[sz — (i — n)gac] A negac]

=Eexpld m>ax[S,A2 Nigge — (i —n)gzc]|

<D expli(AT(8) + ©) — (i — n)8ac]
<Y exp[n(AZ(6) + €) — (i —n)(9gac — AT (6))]
i>n

< Coexp[(AD(6) + e)n] 14

where Cz < oo since IEA2 < ¢oc = AF(8) < 8é2c. Thus (13) and
(14) sandwich the limit of interest in (11) for large n, which after
taking the logarithm and limit as » — oco.must converge to AP ()
for 8 > 0.

Thus we have that

Eexp[0Qy™]<C1+Co Y exp[n(A1(6)+A5 (8)+e~6c)].

n>ne
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If A1(0) + AP (8) < bc, or equivalently ai(8) + ab’ (8, ¢2c) < c,
then we have that IEexp [0Q)™] < co. As long as this constraint
is ‘in effect it follows by Chebyshev’s inequality that for all m,
P(Qi™ > B) < Cexp[—6B); so in fact, letting m — oo we
have shown that for 6 > 0

o1 (8) + ol (8,42¢) < ¢ == limsup % logP(Q' > B) < 4.
B—oo
(15)
On the other hand, if IEA2Z > ¢oc, note that by (8)

1
Qé’m < max [S7 - néic.
<m

0<n
A simplification of the above argument yields that a1(8) < ¢i1c
implies the required constraint on Q' in (15). O

B. Extension to Multiple Buffers

For a GPS node with N > 2 buffers carrying independent
stationary streams, the tail asymptotics are more complex as there
exist a variety of saturation regimes subject to which the spare
capacity will be redistributed in a variety of ways according to the
parameters {¢:}L,. The following results follow from arguments
similar to those in Theorem 1, see [5] for the details.

Corollary 2.1: Let {A; ™ —oos & = 1,-++ N be stationary er-
godic independent arrival processes with

N .
E[ZA;] <e
=1

satisfying the conditions in Theorem 1. Suppose the streams are
segregated into N separate buffers but share a link with capacity
¢ according to a GPS service policy with parameters {¢; Y, which
are positive and normalized, i.e., sum to 1, then

a1 (6) + min {Zai(é),(li— 451)0] <ec

=2
. 1 1
ﬁBlﬁoglogP(Q >B)< -6

where Q' is the steady-state distribution of the queue length in the
buffer associated with the first stream.

III. SUMMARY: RESOURCE MANAGEMENT FOR MULTIPLE QOS

In [3] and [19], starting from (o, p)-constrained traffic flows, worst
case bounds were obtained for backlogs and delays in the network.
However, the price paid for engineering networks subject to worst
case constraints is reduced network “efficiency;” nevertheless, many
researchers propose such approaches when dealing with real-time
traffic flows requiring multiple qualities of service.

The statistical loss or delay constraints considered herein integrate
in a consistent manner with the latter approach. In order to allow
multiple QoS, streams are buffered in segregated resources according
to their types. Assuming types are statistically identical, the perfor-
mance constraint on a segregated buffer translates to a per-stream
QoS guarantee. In order not to lose the gain of statistical multiplexing
among types of streams, bandwidth is shared in a work-conserving
fashion. The GPS policy gives each buffer a minimal bandwidth
guarantee according to network selected weighting factors; these in
“turn allow control of the overflow characteristics in each buffer.

The results in this correspondence exhibit the interactions among
streams in segregated buffers: we have computed approximate band-
width requirements for a given traffic stream as a function of service
weighting parameters and the statistics of the other traffic streams
currently sharing the system. This in turn allows for admission control
and routing oriented toward multiple qualities of service.

We have concentrated on the single-node scenario when traffic
streams satisfy large deviation principles. When traffic streams satisfy
“exponential burstiness bounds” (EBB’s), stability and upper bounds
on queues and delays in a network of GPS nodes have been es-
tablished subject to appropriate conditions on bandwidth assignment
[24], [25]. The relationship between effective bandwidth and (o, p)-
bounds was established in [2]; EBB’s are a probabilistic relaxation of

(o, p) uniform over all time intervals. The effective bandwidth traffic

descriptors, considered herein, are specifically chosen to determine
“asymptotic” QoS requirements such as the é-constraint of (3).
These require the use of an asymptotic lower bound obtained here
via the large deviations principle. We expect that the bandwidth
allocation constraints derived here extend to the network setup,
subject to stability requirements of the type considered in the previous
references, but such results are cumbersome and the simplifications
of the previous section may be more usable.
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Lower Bounds on Expected Redundancy
for Nonparametric Classes

Bin Yu, Member, IEEE

Abstract— This correspondence focuses on lower bound results on
expected redundancy for universal coding of independent and identically
distributed data on [0, 1] from parametric and nonparametric families.
After reviewing existing lower bounds, we provide a new proof for
minimax lower bounds on expected redundancy over nonparametric
density classes. This new proof is based on the calculation of a mutual
information quantity, or it utilizes the relationship between redundancy
and Shannon capacity. It therefore unifies the minimax redundancy lower
bound proefs in the parametric and nonparametric cases.

I. INTRODUCTION

One important ingredient of Rissanen’s stochastic complexity
theory is his (almost) pointwise lower bound on expected redundancy
for regular parametric rodels, and a minimax counterpart follows
from Clarke and Barron [1] (cf. [8]). A similar lower bound was
proved by Rissanen e al. [11] and Yu and Speed [13] on expected
redundancy for the Lipschitz nonparametric class of densities. This
lower bound was shown in two different senses: one extending the
parametric pointwise bound to an artificial parameter space with a
dimension depending on the sample size [11], and the other in the
minimax sense [13].

On the other hand, Rissanen’s pointwise lower bound can be
viewed in the broader picture of the relationship between redundancy
and Shannon capacity. The study of this useful relationship can be
traced back to Gallager [5], who showed that the Shannon capacity
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serves as a lower bound on the minimax expected redundancy over
a parametric source class. Haussler [6] extended the result to general
classes of sources. Merhav and Feder [9] showed that the same
Shannon capacity is a lower bound on the expected redundancy
also in the pointwise or “almost sure” sense. Thus the Shannon
capacity serves as a lower bound on the expected redundancy both in
minimax and pointwise senses. It follows that in the parametric case
the mutual information corresponding to any prior on the parameter
space is a lower bound on redundancy in both senses. Using the
expansion of the mutual information from a smooth prior in [1],
Rissanen’s pointwise lower bound can be rederived through this
redundancy—capacity paradigm. In general, however, calculating or
lower bounding the capacity or mutual information can be difficult.

The focus of this correspondence is on minimax redundancy
lower bounds for nonparametric source classes of independent and
identically distributed (i.i.d.) data strings. Our contribution is the
calculation of the mutual information corresporiding to a uniform
prior on a specially selected finite source subclass, therefore providing
a minimax lower bound on redundancy. Since the old approach for
nonparametric minimax lower bounds in [13] is based on accumulated
prediction error, not on capacity or mutual information, our current
approach unifies the parametric and nonparametric cases.

II. A REVIEW

In this section we review the existing lower bounds on redundancy
in the ii.d. case. For a given i.id. data string =, z2, -+, 2, and
without knowing the distribution f which generated the data, we
would like to compress the data in an efficient way. When f(z) =
fo(z) belongs to a smooth k-dimensional parametric model class
such that the parameter ¢ can be estimated at the nfl/ 2 rate, Rissanen
[10] showed that we need at least H(f) + g log n bits for the string,
asymptotically. That is, for any joint density ¢, on n-tuples, if we
view —logg.(2™) as the code length of an idealized prefix code,
then its expected redundancy is

Egrlog (f5'/qn)-
Rissanen ([10]) showed that
liminf Eyr log (' /qn)/(klogn/2) > 1

for all # values except for a set which depends on ¢ and has
Lebesgue measure zero. With a prefix code achieving this lower
bound, Rissanen justified that glogn can be viewed as the coding
complexity measure of the model class. For more general classes,
Merhav and Feder [9] showed that the Shannon capacity replaces
g li;u as the pointwise or almost sure lower bound on redundancy.
As we can derive from [1], %1"% is naturally the leading term in
the capacity in the regular parametric case.

When f is known to be in the smooth nonparametric density class
of bounded derivatives (or Lipschitz class) on [0, 1], a complexity
rate measure of n*/® was established by Rissanen et al. in [11] by
embedding the nonparametric class in a parametric class of dimension
of order n'/® /log n. This embedding reflects the fact that a smooth
nonparametric class is in essence a parametric class whose dimension
increases with the sample size.

The other approach to obtain lower bounds on expected redundancy
is minimax (cf. [2], [3]). Let w(#) be a prior on the parameter space
and g. a joint density on n-tuples; then Gallager [5] has shown that
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